| Answers for Lesson 12- |                                           |                                              |  |  |  |
|------------------------|-------------------------------------------|----------------------------------------------|--|--|--|
| 1.                     | Object<br>Rock<br>Paper<br>Scissors       | Frequency<br>11<br>10<br>15                  |  |  |  |
|                        | Total                                     | 36                                           |  |  |  |
| 3.<br>4.               | 0.11<br>0.89                              |                                              |  |  |  |
| 5.                     | 0.53                                      |                                              |  |  |  |
| 6.                     | Outcome<br>Red<br>Green<br>Blue<br>Yellow | Probability<br>17<br>37<br>7<br>27<br>1<br>7 |  |  |  |
|                        | Probability<br>B<br>B<br>B<br>C           | G B Y<br>Outcome                             |  |  |  |
| 8.                     | 1                                         |                                              |  |  |  |

Answers for Lesson 12-1 Exercises

| 2. | Player | Wins |
|----|--------|------|
|    | 1      | 7    |
|    | 2      | 8    |
|    | Tie    | 3    |
|    | Total  | 18   |

| 7. | Number of Days Per Month |                |                |                 |                 |  |  |
|----|--------------------------|----------------|----------------|-----------------|-----------------|--|--|
|    | Days                     | 28             | 29             | 30              | 31              |  |  |
|    | Frequency                | 3              | 1              | 16              | 28              |  |  |
|    | Probability              | $\frac{3}{48}$ | $\frac{1}{48}$ | <u>16</u><br>48 | $\frac{28}{48}$ |  |  |





8. 1 Soutcome 

#### Answers for Lesson 12-1 Exercises (cont.)

**10.** Answers will vary. Sample design: Use random numbers. Assign numbers 1 to 1000 to each event, based on its probability.

|           |             | Cumulative  | Assigned |
|-----------|-------------|-------------|----------|
| Age       | Probability | Probability | Numbers  |
| <20       | 0.048       | 0.048       | 1–48     |
| 20–29     | 0.175       | 0.223       | 49–223   |
| 30–39     | 0.199       | 0.422       | 224-422  |
| 40–49     | 0.211       | 0.633       | 423-633  |
| 50–59     | 0.167       | 0.800       | 634-800  |
| 60–69     | 0.102       | 0.902       | 801-901  |
| 70–79     | 0.066       | 0.968       | 902–968  |
| $\geq 80$ | 0.032       | 1.000       | 969–1000 |
|           |             |             |          |

Random numbers generated: 697, 420, 488, 567, 272, 396, 474, 870, 896, 282, 464, 681, 274, 663, 681, 282, 376, 363, 860, 129 Results of simulation: Age 20–29: 1, Age 30–39: 8; Age 40–49: 4, Age 50–59: 4; Age 60–69: 3

**11.** Answers will vary. Sample design: Use random numbers. Assign numbers 1 to 1000 to each event, based on its probability.

|         |       |            | Assigned |
|---------|-------|------------|----------|
| Туре    | Prob. | Cum. Prob. | Numbers  |
| Luxury  | 0.165 | 0.165      | 1–165    |
| Large   | 0.076 | 0.241      | 166–241  |
| Midsize | 0.527 | 0.768      | 242-768  |
| Small   | 0.232 | 1          | 769–1000 |

Random numbers generated: 612, 904, 249, 194, 435, 772, 93, 236, 80, 370, 849, 468, 819, 800, 371, 14, 396, 278, 303, 662, 637, 572, 700, 196, 810, 314, 496, 408, 737, 624

Results of simulation: 3 luxury cars, 3 large cars, 18 midsize cars, and 6 small cars

297

Answers for Lesson 12-1 Exercises (cont.)



14. a. Weather Conditions in Dayton, Ohio

| Туре          | Frequency | Probability |
|---------------|-----------|-------------|
| Clear         | 82        | 0.225       |
| Partly Cloudy | 118       | 0.323       |
| Mostly Cloudy | 34        | 0.093       |
| Rain          | 75        | 0.205       |
| Light Snow    | 45        | 0.123       |
| Snow          | 11        | 0.030       |

- **b.** The independent variable is the type of weather. The dependent variable is the probability that a type of weather occurs.
- c.  $\frac{131}{365}$  OR 0.359
- 15. Check students' work.
- **16. a.** The independent variable is the amount of gas in the tank; the dependent variable is the percent of people who fill their tanks when they have a given amount of gas.



**c.** 0.28 or 28%

298

# Answers for Lesson 12-1 Exercises (cont.)

**17.** Answers may vary. Sample: Suppose the events in a probability distribution are *not* equally likely. By assigning the appropriate number of *equally likely* outcomes to each event, you can design a simulation that reflects the actual probabilities expected.



**19.** Answers may vary. Sample:

| Calla |                       | Cum Droh                                                                                                                                                                                                                   | Accianced #c                                                                                |
|-------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Calls | P(C)                  | Cum. Prop.                                                                                                                                                                                                                 | Assigned #s                                                                                 |
| 0     | 0.21                  | 0.21                                                                                                                                                                                                                       | 1–21                                                                                        |
| 1     | 0.30                  | 0.51                                                                                                                                                                                                                       | 22–51                                                                                       |
| 2     | 0.18                  | 0.69                                                                                                                                                                                                                       | 52-69                                                                                       |
| 3     | 0.13                  | 0.82                                                                                                                                                                                                                       | 70-82                                                                                       |
| 4     | 0.09                  | 0.91                                                                                                                                                                                                                       | 83–91                                                                                       |
| 5     | 0.05                  | 0.96                                                                                                                                                                                                                       | 92-96                                                                                       |
| 6     | 0.03                  | 0.99                                                                                                                                                                                                                       | 97–99                                                                                       |
| 7     | 0.01                  | 1.00                                                                                                                                                                                                                       | 100                                                                                         |
|       | Calls 0 1 2 3 4 5 6 7 | Calls         P(c)           0         0.21           1         0.30           2         0.18           3         0.13           4         0.09           5         0.05           6         0.03           7         0.01 | CallsP(c)Cum. Prob.00.210.2110.300.5120.180.6930.130.8240.090.9150.050.9660.030.9970.011.00 |

- **b.** There were six hours in which 3 calls were received, and two in which 4 calls were received. A total of ten callers would have to wait.
- **c.**  $\frac{10}{47}$
- **d.** An additional response team would reduce the probability of having to wait from  $\frac{10}{47}$  to  $\frac{2}{47}$ , a considerable improvement.
- **20.** a. 0.0000001, 0.16, ≈0.84
  - **b.** Check students' work.
  - c. Check students' work.

299



**d.** The fact that P(A) = P(A | B) illustrates that the probability of A is the same, regardless of the occurrence of B.

# 14-18. Check students' work.

# **19.** *P*(*C*)

- **20.** P(S and W) **21.**  $P(R \mid W)$  **22.**  $P(W \mid S)$
- **23. a.** The four right branches represent probabilities conditional upon the person being an adult or a minor. For example, the top branch represents the probability that a person is licensed given that he or she is an adult.
  - **b.** No; the probability of a minor being licensed is not the same as the probability of an adult being licensed.
  - **c.** Check students' work.

**24.**  $P(I \mid N) = 0.2$ 

#### Answers for Lesson 12-3 Exercises



- **b.** No; if there is an even number of items in a data set, the median may lie between data values.
- **c.** No; 50% of a data set will always lie at or below the median.

- **c.** The main effect of removing the outlier is a shortening of the long whisker. The median decreases from 8.5 to 8.
- **14.** 103; this value lowers the mean.
- **15.** 381; this value raises the mean.
- **16.** 0th

#### **17.** 60th

**18.** Only 14 out of 20 values are below 89, so 89 is at the 70th percentile. For a number to be at the 100th percentile, 100% of the values must be below that number. That is impossible since a number cannot be less than itself.

- **19. a.** 18.9, 19
  - **b.** No; none of the values is significantly less or greater than the others.
  - **c.** Recent earthquakes have been more consistent in their numbers, with fewer light years as well as fewer extremely heavy years; this is indicated by the shorter whiskers on the box-and-whisker plot for 1991 through 2000.
- **20.** The median is a better representation for the data; a few outliers can heavily influence the mean without drastically affecting the median.
- **21. a.** Men: \_\_\_\_\_\_ Women: \_\_\_\_\_\_ 14 15 16 17 18 19 20 21
  - **b.** Answers may vary. Sample: The range for women's shot put is greater than men's. The men are more consistent, as indicated by the shorter box and whiskers. Overall the men tend to throw farther.
- 22. a.

Algebra 2



**b.** A Presidential election greatly increases voter turnout rate for the House of Representatives. The median turnout increases by 13.4%. The minimum turnout in a Presidential election year is 6.9% greater than the maximum turnout for a non-Presidential election year.

| Answers for Lesson 12-4 |              | Exercises     |           |            |                 |
|-------------------------|--------------|---------------|-----------|------------|-----------------|
| 1.                      | 5, 2.5       | 2.            | 105, 57   | 3.         | 704, 461        |
| 4.                      | 258.6, 228.3 | 5.            | 15.1, 3.5 | 6.         | 3816.43, 67.22  |
| 7.                      | 10,259.18, 3 | 00.28         | 8.        | 2 standard | deviations      |
| 9.                      | 3 standard   | deviations    | 10.       | 2.8        |                 |
| 11.                     | -1.4         | <b>12.</b> 20 | 13.       | 0          | <b>14.</b> −2.8 |
|                         |              |               |           |            |                 |

- **15.** 14.6, 52.3; the bird speeds are more spread out than the cat speeds.
- **16.** 4.1, 2.0; the number of buttons is more spread out than the number of pockets.
- **17.** 2001: ≈6707; 2002: ≈6738
- **18.** The range dropped slightly from 7715 in 2001 to 7611 in 2002. Overall farm income increased slightly, but there was less variability among the states in 2002.
- **19.** 2678.9, 2759.0; The incomes in 2001 clustered more tightly around the mean.
- **20.** Iowa
- **21.** a. 53.8, ≈3.4
  b. 7; 9; 10
- **22.** ≈10.9; ≈3.3 **23.** ≈75.8; ≈8.7
- **24.** ≈1.9; ≈1.4 **25.** ≈0.007; ≈0.08
- **26.** Answers may vary. Sample: standard deviation; it has the same units of measure as the data, and it doesn't magnify the variation as much as the variance does.
- **27.** Minh; one standard deviation encompasses all values within one standard deviation above and below the mean. The graph actually shows that all values are within 3 standard deviations of the mean.

- **28.** Check students' work.
- **29. a.** men: 14; 22.9; 3.2 women: 12; 25.9; 3.8
  - **b.** No; the men's team has a broader range of ages, but a smaller standard deviation than the women's team.
- **30. a.** union: \$641; \$279 nonunion: \$564; \$317
  - **b.** union: \$98 nonunion: \$92
  - **c.** union: 3; nonunion: 2
  - **d.** On average, union workers are paid more than nonunion workers. The pay range is broader for nonunion workers. Union workers' pay is more broadly distributed than nonunion workers'.

## Answers for Lesson 12-5 Exercises

- **1.** 73% **2.** 45% **3.** 92%
- **4.** This sampling method overrepresents shoppers buying greeting cards.
- 5. very little bias
- **6.** If students walk or drive to school, or are involved in other after-school activities, they are not represented by this sample method.
- **7.** C; this sample has the smallest standard deviation, which most likely indicates a larger sample.
- **8.** Group B probably was the smaller sample; it has the greater variation in the percentages represented in the graph.

| 9.  | ±7%                   | 10. | $\pm 4\%$ | 11                  |          | ±3%    |
|-----|-----------------------|-----|-----------|---------------------|----------|--------|
| 12. | 156                   | 13. | 400       | 14                  | <b>.</b> | 10,000 |
| 15. | $\pm 4\%$ ; 55% to 63 | %   |           | <b>16.</b> ±5%; 57° | %        | to 67% |
| 17. | <b>a.</b> 63%         |     |           |                     |          |        |
|     | <b>b.</b> ±5%         |     |           |                     |          |        |
|     | <b>c.</b> 58% to 68%  |     |           |                     |          |        |
| 18. | <b>a.</b> 92%         |     |           |                     |          |        |
|     | <b>b.</b> ±4%         |     |           |                     |          |        |
|     | <b>c.</b> 88% to 96%  |     |           |                     |          |        |
| 19. | <b>a.</b> 94%         |     |           |                     |          |        |
|     | <b>b.</b> ±18%        |     |           |                     |          |        |
|     | <b>c.</b> 76% to 100% |     |           |                     |          |        |
| 20. | <b>a.</b> 6%          |     |           |                     |          |        |
|     | <b>b.</b> ±25%        |     |           |                     |          |        |
|     | <b>c.</b> 0% to 31%   |     |           |                     |          |        |

### Answers for Lesson 12-5 Exercises (cont.)

- **21.** Check students' work.
- 22. Doubling a sample size multiplies the margin of error by  $\frac{1}{\sqrt{2}} \approx 0.71$ , so the margin is about 71% of its former value.
- 23. Check students' work.
- **24.** A sample proportion is an experimental probability; it is based on actual measurements.
- **25.** This method is biased because it overrepresents people who respond to the online advertisement. A less biased method could involve surveying a group of people selected at random.
- **26.** 11%, ±3%
- **27.** 31%, ±13%
- **28.** 40%, ±6%
- **29.** 63%, ±5%
- **30.** a. \$22,220
  - **b.** \$50,000; more than doubling the cost of the survey has made only a small improvement in the margin of error.
- **31. a.** There is an 8% margin of error; the candidate should be aware that 52% of the voters could actually prefer the opponent.
  - b. The candidate should feel more confident after the second poll; it has a margin of error of only 4%, which means this candidate is preferred by at least 51% of voters.
- **32.** 51 black bears

## Answers for Lesson 12-6 Exercises

- 1. Each guess is a trial. There are 5 trials. Each correct answer is a success. The probability of a success on a single trial is 0.5. Check students' designs and simulations.
- 2. Each voter selected is a trial. There are 10 trials. A vote in favor of the bond is a success. The probability of a success on a single trial is 0.4. Check students' designs and simulations.
- **3.** Each shift is a trial. There are 3 trials. Not experiencing a breakdown is a success. The probability of a success on a single trial is 0.9. Check students' designs and simulations.





- **21.** Each term of a binomial expansion  $(p + q)^n$  involves a power of p times a power of q. The coefficient of each term is the number of times that combination of powers results when  $(p + q)^n$  is expanded. In a binomial experiment of n trials, each trial results in success or failure, with probabilities p and q. The probability of each outcome contains n factors, each of which is either p or q. The coefficient of each term is the number of ways that outcome can be achieved.
- **22. a.** 0.0914
  - **b.** The probability that 3 boxes would be underweight is 0.0001. Thus I would conclude that there is a malfunction in the machinery that must be corrected.

- **23.** Check students' work.
- 24. The probability of a group of 30 students having 4 or fewer left-handed students is 77.05%. This percentage means that more than three quarters of the classes will have enough left-handed desks; 4 is an adequate number.
- **25.** a.  ${}_{40}C_3 \left(\frac{1}{7}\right)^3 \left(\frac{6}{7}\right)^{37} \approx 0.0960 = 9.6\%$ 
  - b. Answers may vary. Sample: Generate 40 numbers ranging from 1 to 7. Let the number 4 represent Wednesday birthdays. Repeat 10 times. Count the number of runs that 4 came up exactly 3 times; divide that number by 10 to get the probability that exactly 3 of 40 people will have Wednesday birthdays. Check students' work for probability.
  - **c.** 10 runs is too few to get an accurate probability.
- **26.** Answers may vary. Sample: 60% of the summer days in Eastport are sunny. What is the probability of a week containing just two sunny days?
- **27.** Getting 5 or more items right by guessing would be statistically rare. The probability of getting 10, 9, 8, 7, or 6 correct is each less than 1%. The probability of getting 5 right is 2.6%. The probability of getting 4 right is 8.8%.
- **28.** Check students' work.
- **29.** a. The graph is symmetrical about the line x = 3.5.
  - b. X y 0.0078 0 1 0.0547 2 0.1641 3 0.2734 4 0.2734 5 0.1641 0.0547 6 7 0.0078
  - **c.** No; the bulge in the graph has shifted right.



- **16.** The student's grade is an outlier; 99% of all grades are expected to be within 3 standard deviations of the mean, and this score is 4.4 standard deviations above the mean.
- **17. a.** set 2





- **26.** The first plant was in the top 16% of its group.
- **27. a.** 209
  - **b.** 41
  - **c.** 127–250



- **b.** The data do not fit a normal curve; the data are too skewed to the left.
- **29.** Elena scored within the top 10% of her group. Her score is 2.75 std. dev. above the mean, which places her in the top 1%. Jake did not score in the top 10%. His score is 1.16 std. dev. above the mean, or at the 88th percentile.
- **30.** 480 tubs
- **31.** a. 162 balls
  - **b.** 930 balls
  - **c.** Check students' work.

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved