Algebra 1

Ms. Hornecker

Welcome!!

Your Seating Chart is on the board

The number by your name is your phone pocket number. Please make sure your phone is there everyday!

Warm up-

Simplify the following

1.
$$2^3 = 8$$
 2. $4^2/2^2 = 6$ 3. $(-3)^3 = 6$ $(-3)(-3)(-3)(-3) = 6$

4.
$$-3^3 =$$
 5. $1/4^2 = 1/5$ 6. $6^2/12 = 3$

$$-3 \cdot 3 \cdot 3 = -27$$

$$-3 \cdot 3 \cdot 3 = -27$$

$$-3 \cdot 3 \cdot 3 = -27$$

Chapter 8: Exponents and Exponential Functions Section 8.1 Zero and Negative Exponents

Success Criteria (SC): Students Will Be Able To (SWBAT):

- understand and define and reason behind exponential rules
- simplify exponential expressions
- evaluate exponential expressions

Foldable instructions!!!

http://www.instructables.com/id/Poof-Books/

Exponent Properties-

Zero as an Exponent

For every nonzero number a, $a^0 = 1$

Ex: 1.
$$5^{\circ} = 1$$
 2. $-2^{\circ} = -1$ 3. $(1.02)^{\circ} = 1$

Exponent Properties-

Negative Exponent

For every nonzero number a and integer n, a-n

=
$$1/a^n$$

$$Q^{-n} = \frac{1}{Q^n}$$
Ex: $1.6^{-4} = \frac{1}{6^4}$

$$2. (-8)^{-1} = \frac{1}{(-8)^1} = -\frac{1}{8}$$

$$3. \frac{1}{4^{-2}} = \frac{1}{4^{-1}}$$

Simplify

1.
$$(-7)^0 = |$$

2.
$$-3^{-2} = \frac{1}{-3^2} = \frac{1}{-9} = -\frac{1}{9}$$

3.
$$3^{-4} = \frac{1}{3^{4}} = \frac{1}{81}$$

Simplify \rightarrow only positive exponents 1. $4xy^{-3} = \frac{4x}{y^3}$

1.
$$4xy^{-3} = \frac{4 \times 3}{4 \times 3}$$

2.
$$7s^{-4}$$

3.
$$\frac{n^{-5}}{v^2} = \frac{1}{\sqrt{200}}$$

Evaluate
$$4x^2y^{-3}$$
 for x = 3 and y = -2

First, re-write with positive exponents only . . .

$$\frac{4x^3}{4x^3}$$

Then substitute values . . . and calculate . . .

$$\frac{4(3)^{2}}{(-a)^{3}} = \frac{4.9}{-8} = \frac{36 \div 4}{-8 \div 4} = \frac{9}{-8}$$

Evaluate
$$\frac{n^{-1}}{c^2}$$
 for $n = -2$ and $c = 3$

$$\frac{1}{(3)^2(-2)} = \frac{1}{(-2)^2} = -\frac{1}{(-2)^2}$$

Evaluate
$$\frac{1}{nw^{-2}}$$
 for $n = -2$ and $w = 5$

$$\frac{\omega^{2}}{10} = \frac{(5)^{2}}{-2} = \frac{25}{2}$$

In the lab, the population of a certain bacterial doubles every month. The expression 3000•2^m models a population of 3000 bacteria after m months of growth. Evaluate the expression for m=0 and m= -2. describe what the value of the expression represents in each situation.

3000. 2° 3000.1 3000 Homework

Pg 433 #1-32