1. Three gears are arranged as shown. Determine the measure of angle θ correct to the nearest degree.

Warm up

$$\frac{\sin 23}{4.3} = \frac{\sin X}{5.6}$$

 $X = 30.5^{\circ}$

For problems 2 and 3 round your answer to the nearest tenth.

2. Solve the triangle given B = 43, a = 22, b = 17.

3. Find the area of a triangle with sides a = 6, b = 12, c = 7.

$$S = \frac{a+b+c}{2}$$

$$A = \sqrt{S(s-a)(s-b)(s-c)}$$

$$C = \frac{1}{2}$$

GO COUGARS

Homework Questions

In Exercises 1-4, find the dot product of u and v.

1.
$$\mathbf{u} = \langle 6, 3 \rangle$$
 2. $\mathbf{u} = \langle -4, 1 \rangle$
 $\mathbf{v} = \langle 2, -4 \rangle$ $\mathbf{v} = \langle 2, -3 \rangle$
3. $\mathbf{u} = 5\mathbf{i} + \mathbf{i}$ 4. $\mathbf{u} = 3\mathbf{i} + 2\mathbf{i}$

3.
$$\mathbf{u} = 5\mathbf{i} + \mathbf{j}$$

 $\mathbf{v} = 3\mathbf{i} - \mathbf{j}$
 $\mathbf{v} = -2\mathbf{i} + \mathbf{j}$
 $\mathbf{v} = -2\mathbf{i} + \mathbf{j}$

In Exercises 5–10, use the vectors $\mathbf{u} = \langle 2, 2 \rangle$, $\mathbf{v} = \langle -3, 4 \rangle$, and $w = \langle 1, -4 \rangle$ to find the indicated quantity. State whether the result is a vector or a scalar.

In Exercises 11-16, use the dot product to find the magnitude of u.

11.
$$\mathbf{u} = \langle -5, 12 \rangle$$
 12. $\mathbf{u} = \langle 2, -4 \rangle$ 13. $\mathbf{u} = 20\mathbf{i} + 25\mathbf{j}$ 14. $\mathbf{u} = 6\mathbf{i} - 10\mathbf{j}$

15.
$$u = -4j$$
 16. $u = 9i$

In Exercises 17–24, find the angle θ between the vectors.

17.
$$\mathbf{u} = \langle -1, 0 \rangle$$
 18. $\mathbf{u} = \langle 4, 4 \rangle$
 $\mathbf{v} = \langle 0, 2 \rangle$ $\mathbf{v} = \langle -2, 0 \rangle$
19. $\mathbf{u} = 3\mathbf{i} + 4\mathbf{j}$ 20. $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$
 $\mathbf{v} = -2\mathbf{i} + 3\mathbf{j}$ $\mathbf{v} = \mathbf{i} - 2\mathbf{j}$
21. $\mathbf{u} = 2\mathbf{i}$ 22. $\mathbf{u} = 4\mathbf{j}$

$$\mathbf{v} = -3\mathbf{j} \qquad \mathbf{v} = -3\mathbf{i}$$

$$\mathbf{23.} \ \mathbf{u} = \cos\left(\frac{\pi}{3}\right)\mathbf{i} + \sin\left(\frac{\pi}{3}\right)\mathbf{j}$$

$$\mathbf{v} = \cos\left(\frac{3\pi}{4}\right)\mathbf{i} + \sin\left(\frac{3\pi}{4}\right)\mathbf{j}$$

In Exercises 25-28, graph the vectors and find the degree measure of the angle between the vectors.

25.
$$\mathbf{u} = 2\mathbf{i} - 4\mathbf{j}$$
 26. $\mathbf{u} = -6\mathbf{i} - 3\mathbf{j}$ $\mathbf{v} = 3\mathbf{i} - 5\mathbf{j}$ $\mathbf{v} = -8\mathbf{i} + 4\mathbf{j}$
27. $\mathbf{u} = 6\mathbf{i} - 2\mathbf{j}$ 28. $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$ $\mathbf{v} = 8\mathbf{i} - 5\mathbf{j}$ $\mathbf{v} = 4\mathbf{i} + 3\mathbf{j}$

In Exercises 29 and 30, use vectors to find the interior angles of the triangle with the given vertices.

In Exercises 31 and 32, find $u \cdot v$, where θ is the angle between u and v.

31.
$$\|\mathbf{u}\| = 9$$
, $\|\mathbf{v}\| = 36$, $\theta = \frac{3\pi}{4}$

Chapter 6 Review Topics

Formulas you need to know:

6.1

Law of Sines $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Area using sin $\frac{1}{2}ab\sin C$ "two sides and the angle in between"

6.2

Law of Cosines $a^2 = b^2 + c^2 - 2bc \cos A$ "used to find a side length"

 $\frac{a^2 - b^2 - c^2}{-2bc} = \cos A \quad \text{``used} \text{ to find and angle''}$

Area using all sides $\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$

6.3 Vectors

Component Form $\langle v_1, v_2 \rangle$

Standard Form $v_1i + v_2j$

Trig Component Form $\langle ||v|| \cos \theta, ||v|| \sin \theta \rangle$

Standard Trig Form $||v||i\cos\theta + ||v||j\sin\theta$

 $||v|| = \sqrt{{v_1}^2 + {v_2}^2}$

Unit Vector $\langle \frac{v_1}{\|v\|} \frac{v_2}{\|v\|} \rangle$

Bearing "starts from North"

Trig Angle "starts from positive x axis"

Review Practice Problems

- 1. Use the given vectors for the following: $v = \langle -2, 3 \rangle$ $w = \langle 5, 1 \rangle$
 - a. sketch w v

$$W + 2V$$

b. find the unit vector for vector v

$$\|u\| = 8$$
 $\left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right)$

c. find the trig component form of vector w (calc ok)

$$\tan^{-1}\left(\frac{1}{5}\right) = 11.3^{\circ}$$

2. How many triangles with given information can be formed? Do not solve.

a.
$$A = 61^{\circ}$$
, $a = 8$, $b = 21$

b.
$$A = 112^{\circ}$$
, $a = 15$, $b = 17$

c.
$$B = 18^{\circ}$$
, $C = 65^{\circ}$, $c = 12$

3. Solve the triangle to two decimal places.

$$a = 7, b = 15, c = 19$$

4. Twelve horses are equally spaced on a merry-go-round. If the chord connecting the center of each horse is 18 feet long, what is the diameter of the merry-go-round? What is the length of the arc between each horse?

5.

6.

HOMEWORK

p 461 1-73 odd, 79-90, 93, 95

p 465 1-15

Workbook p 133 1-12

p 445 2, 10, 28, 30, 32

1. Solve the triangle.

$$B = 35$$
, $b = 12$, $c = 15$

1. Solve the triangles given the following information.

a.
$$C = 75$$
, $b = 49$, $c = 48$