Warm up

Sketch by hand.

1.
$$y = \log_6(x-1) + 2$$

2.
$$y = -4^{x+1} - 5$$

$$\begin{array}{c}
 0 &= -1096(x-1)+2 \\
 -2 &= \\
 2 &= 1096(x-1)
 \end{array}$$

$$\begin{array}{c}
 2 &= (x-1)
 \end{array}$$

GO COUGARS!

Homework Questions

3.2 Logarithmic Functions and Their Graphs

$$exp \longrightarrow log \longrightarrow exp$$

evaluate

properties of logs

Rewrite from exponential form to log form

$$x = a^y$$

 $x = a^y$ Drop, criss, cross

Rewrite in log form

Rewrite in log form
$$3 = 4^{x} \qquad x = 5^{2} \qquad 4 = x^{3} \qquad e^{x} = 3$$

$$\log_{5} x = 2 \qquad \log_{4} x = 3 \qquad \ln_{3} x = x$$

$$\log_{4} 3 = x \qquad \log_{6} 3 = x$$

$$\log_{6} 3 = x \qquad \ln_{3} x = x$$

Rewrite in exponential form

$$\log_{x} 4 = 7$$

$$\log_x 4 - 7$$

$$\log 3 = x$$

$$O^{\times}=3$$

$$\log_2 x = 4$$

$$\log_x 4 = 7 \qquad \log 3 = x \qquad \log_2 x = 4 \qquad \ln 5 = x$$

$$\uparrow = 4 \qquad \downarrow 0$$

$$\ln 5 = x$$

log equation in general $y = \log_a x$

Rewrite in exponential form

$$\log_2 8 = 3 \qquad \log_2 1 = 0 \qquad \log_2 2 = 1$$

$$2^3 = 8 \qquad 2^\circ = 1 \qquad 2^\circ = 2$$

What does it mean????

$$109327 = 3$$

The power dolraise 3 to $109464 = 3$
 $109264 = 6$
 10924

Using logs to evaluate

$$y = \log_2 8$$

$$y = \log_3 1$$

$$y = \log_{10} \frac{1}{1000}$$

Properties of Logs

If
$$\log_a x = \log_a y$$

Then
$$x = y$$

$$\ln 1 = 0$$

$$\log e = 1$$

$$e^{\ln x} = x \longrightarrow$$

$$\times = \times$$

If
$$\ln x = \ln y$$

Then
$$x = y$$

Now that we have these properties, let's revisit our evaluation problems.

$$y = \log_2 8$$

$$y = \log_5 25$$

$$y = \log_{10} \frac{1}{1000}$$

$$y = \log_7 \frac{1}{49}$$

$$y = \log_7 1$$

$$y = \log_3 1$$

$$y = \log_{12} 12$$

$$y = \ln 1$$

$$y = \ln e$$

$$y = 0$$

If no base is written for a common logarithmic expression it is understood to be 10!

- common log base 10 is what calculator uses
- e is the base for natural logs

 $\ln \pi$

log15

Evaluate the following using your calculator

p 203 1-19 odd, 25-41 odd,

63-69 odd

-69 odd
$$y = -2 \log_3(2x-1) + 4$$

$$y = -\frac{1}{3}(2) - x + 4 - 3$$

$$\begin{pmatrix} 0 & -\frac{1}{3} \\ 0 & -\frac{1}{3} \\ 1 & -\frac{2}{3} \\ 1 & 2 \\ 1 & 2 \\ 3 \end{pmatrix}$$

$$0 = -3(4)^{-2x+6} + 2$$