13.7 Graphing Sin and Cos Curves Day 3

Objective: To graph sin and cos curves using vertical and horizontal shifts

$$y = (x - 5)^2 - 2$$

The horizontal shift is right 5
The vertical shift is down 2

These same concepts can be applied to trig graphing.

$$y = \sin(\theta - \pi) - 2$$

The horizontal shift is right π The vertical shift is down 2

Sketch one period of $y = \sin \theta + 1$

Sketch one period of $y = 2 \cos(\theta - \frac{\pi}{2})$

Sketch one period of $y = -3 \sin(\theta + \pi) - 2$

Sketch one period of $y = 2 \sin 4(\theta + \frac{\pi}{8}) - 6$

YOUR TURN! Sketch one period of $y = -2 \cos (3(\theta - \frac{\pi}{6})) + 5$

YOUR TURN! Sketch one cycle of $y = \cos(\pi (\theta - \frac{1}{2})) - 10$

YOUR TURN!

Write an equation for a cosine function that has a phase shift of $\frac{\pi}{2}$ left, an amplitude of 5, is reflected over the x-axis and moved 6 units down.

HW 13.7

p. 760 #11-35 odd, (change the shift in 11 and 29 to pi not 3) 38-42 all